It need "3 electrons" to have a stable electronic configuration.
'cause it has 5 electrons in it's outer shell & every atom needs 8 electrons. So, it requires 3 more!
Hope this helps!
Answer:
The atomic mass of the boron atom would be <em>10.135</em>
Explanation:
This is generally known as relative atomic mass.
Relative atomic mass or atomic weight is a physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass of 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative and does not have a unit.
<em>Note that the relative atomic mass of atoms is not always a whole number because of it being isotopic in nature.</em>
- <em>Divide each abundance by 100 then multiply by atomic mass</em>
- <em>Do that for each isotope, then add the two result. Thus</em>
Relative atomic mass of Boron = (18.5/100 x 11) + (81/100 x 10)
= 2.035 + 8.1
= 10.135
Answer:
Density = mass / volume.
If this is an ideal gas then 1mol will take up 22.4L of volume (fact about ideal gases you should remember)
Since you have 1mol then you know the volume of the gas that you have (22.4L)
Now, just convert 1mol of CO to grams.The ptable tells you that the mass of 1 mol of C is 12g and the mass of 1 mol of O is 16g. So the mass of 1 mol of CO is......... :):)
Now you have the mass and the volume, so just divide :) enjoy
Answer:
If you continue to cool water past 4 degrees Celsius, its density starts to plummet (you can see this in the graph). At zero degrees, i.e., the temperature at which water turns into ice, the density of water is actually quite low. It turns out that ice has a lower density than water, and any object that has a lower density than the liquid form on which it’s kept (in this case, water) will be able to float!
Explanation: