Additional Information:
I couldn't get your question very clearly. In order to solve the question, I will define moment of inertia, state the formula and factors that the moment of inertia of a body depends and does not depend on.
Answer:
<u>Moment of inertia depends on;</u>
1. Mass of the body
2. Axis of rotation and
3. Distribution of the body
<u>Moment of inertia does not depend on;</u>
1. Angular velocity of the body.
Explanation:
The moment of inertia is defined as a quantity that determines the torque needed for a desired angular acceleration or a property of a body due to which it resists angular acceleration about a rotational axis.
Moment of Inertia, I = ∑mr²
Where,
I is the moment of Inertia
m is the mass
r is the distance from the axis of the rotation
The moment of inertia of a body depends on distribution of body, axis of rotation and mass of the body. However, the moment of Inertia of a body is not dependent on angular velocity of the body.
Answer:
0.01
Explanation:
Given the data:
10.1,9.87, 9.76, 9.91, 9.75, 9.88, 9.69, 9.83, 9.90
True value = 9.81
Mean value :
Σx / n
Sample size, n = 9
(10.1 + 9.87 + 9.76 + 9.91 + 9.75 + 9.88 + 9.69 + 9.83 + 9.90) / 9
= 88.69 / 9
= 9.854
Standard deviation (σ) :
Sqrt (Σ(X - m)² / n)
[(10.1 - 9.854)^2 + (9.87 - 9.854)^2 + (9.76 - 9.854)^2 + (9.91 - 9.854)^2 + (9.75 - 9.854)^2 + (9.88 - 9.854)^2 + (9.69 - 9.854)^2 + (9.83 - 9.854)^2 + (9.90 - 9.854)^2] / 9
Sqrt(0.113824 / 9)
Sqrt(0.0126471)
σ = 0.1124593
Standard Error = σ / sqrt(n)
Standard Error = 0.1124593 / 9
Standard Error = 0.0124954
Standard Error = 0.01 ( 1 significant digit)
Answer:250N
Explanation:
Spring constant=500N/m
Extension=0.5m
Weight=spring constant x extension
Weight=500 x 0.5
Weight=250
Weight is 250N
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.
Jack Nicklaus once said about golf that "hitting a perfectly straight shot with a big club is a fluke." Science of Golf (SOG): Newton’s Third Law of Motion and Momentum explains what happens when a golfer swings a golf club and applies a big force to the small golf ball. The video features amateur golfer and Stanford University student Patrick Rodgers who gives his opinion on the importance of knowing what causes power and speed in the golf swing. Jim Hubbell, research engineer at the United States Golf Association (USGA) discusses what forces are and how they work in pairs. Hubbell also defines momentum and how it is transferred to the ball.
Hope this helps