Answer:
The table can be used to predict the properties of elements, even those that have not yet been discovered. Columns (groups) and rows (periods) indicate elements that share similar characteristics.
The table makes trends in element properties apparent and easy to understand.
The table provides important information used to balance chemical equations. Atoms are important because they form the basic building blocks of all visible matter in the universe. There are 92 types of atoms that exist in nature, and other types of atoms can be made in the lab. The different types of atoms are called elements. Hydrogen, gold and iron are examples of elements comprised of unique types of a single kind of atom.
Explanation:
Pressing two objects together with more force Increase friction
Answer:

Explanation:
We need to apply conservation of momentum and energy to solve this problem.
<u>Conservation of momentum</u>

(1)
- m(c) is the mass of stick clay
- m(w) is the mass of the wooden block
- v(ic) is the initial velocity of clay
- V is the final velocity of the system clay plus wood.
<u>Conservation of total energy</u>
The change in kinetic energy is equal to the change in internal energy, in our case it would be the energy loss due to the friction force. Let's recall the definition of work, it is the dot product between force and displacement, Therefore:



We can find V from this equation:

Now, let's put V into the equation (1) and find v(ic)

I hope it helps you!
<u />
Its called static friction.
According to the law of conservation of momentum, the <u> TOTAL </u> amount of momentum of a group of objects does not change unless outside _____<u>FORCES</u>____ act on the objects.