Answer:
0.017 N
Explanation:
The relevant relation is ...
F = GMm/r²
where G is the universal gravitational constant, 6.67408 × 10^-11 m^3·kg^-1·s^-2, M and m are the masses of the objects, and r is the distance between them.
__
Filling in the given numbers, we find the force to be ...
F = (6.67408 × 10^-11 m^3·kg^-1·s^-2)(8.7 × 10^20 kg)(77 kg)/(1.6 × 10^7 m)^2
where m in this expression is the unit "meters".
F = 6.67408 · 8.7 · 77/2.56 × 10^(-11 +20 -2·7) N ≈ 0.017 N
The asteroid exerts a force of about 0.017 N on Sally.
__
<em>Additional comment</em>
That's about 0.000023 times the force of Earth's gravity.
Based on your problem where as ask for the distance of the ball drop between the pitchers mound and the home plate and with a given of the speed of ball is 43m/s and the homeplates is 60.6ft away. Based on my step by step procedure and also considering the value of gravity by 9.8m/s^2 i came up with the distance of 144m away
The angle that the cart rolls with the horizontal. The closer the ramp gets to 90 degrees the faster the cart will accelerate.