This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball.
<em></em>
Answer:
1. The magnitude of the force from the spring on the object is zero on <em>Equilibrium.</em>
2. The magnitude of the force from the spring on the object is a maximum on <em>The top and bottom.</em>
3. The magnitude of the net force on the object is zero on <em>The Bottom.</em>
4. The magnitude of the force on the object is a maximum on <em>the Top.</em>
Explanation:
<em>1. Because the change in position delta X is zero.</em>
<em>2. Because of delta X.</em>
<em>3. Beacuse, the force of gravity and the force of the spring oppose each other to keep the block at rest, away from the equilibrium position.</em>
<em>4. Because, the force of the spring from compressiom and the force of gravity both act on the mass.</em>
The phenomenon of inducing voltage by changing the magnetic field around a conductor will be Electromagnetic Induction. Option B is correct.
<h3>What is the Faraday law of electromagnetic induction?</h3>
According to Faraday's law of electromagnetic induction, the rate of change of magnetic flux link with the coil is responsible for generating emf in the coil to result in the flow of amount of current .
So in order to increase the current, we need to increase the EMF;
so we can increase it by;
1) Increasing the number of turns
2) Increase the area of the loop
3) By moving the magnet faster
Hence, option B is correct.
To learn more about Faraday law of electromagnetic induction:
brainly.com/question/13369951
#SPJ1