Answer:
60 rad/s
Explanation:
∑τ = Iα
Fr = Iα
For a solid disc, I = ½ mr².
Fr = ½ mr² α
α = 2F / (mr)
α = 2 (20 N) / (0.25 kg × 0.30 m)
α = 533.33 rad/s²
The arc length is 1 m, so the angle is:
s = rθ
1 m = 0.30 m θ
θ = 3.33 rad
Use constant acceleration equation to find ω.
ω² = ω₀² + 2αΔθ
ω² = (0 rad/s)² + 2 (533.33 rad/s²) (3.33 rad)
ω = 59.6 rad/s
Rounding to one significant figure, the angular velocity is 60 rad/s.
An example of a high specific heat is water’s specific heat, which requires 4.184 joules of heat to increase the temperature of 1 gram of water 1 degree Celsius. Scientifically, water’s specific heat is written as: 1 calorie/gm °C = 4.186 J/gm °C.
Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:

where k is Coulomb's constant,
and
are the charges and d is the distance between the charges.
Working a little the equation, we can take:


And this equation will give us the distance between the charges. Taking the values of the problem

(the force has a minus sign, as its attractive)




And this is the distance between the charges.
Answer:
O bike tires on the road as you ride
Explanation:
is the rolling friction