Answer:
Yes, it would make it back up.
Explanation:
If it has 100,000 Joules of gravitational potential energy at the top of the hill, by the time the cart gets to the bottom, it will become PE = 0, KE = 90,000 since 10% of 100,000 is 10,000. The cart only requires 80,000J to climb back up so it should easily do so.
I didn't quite understand if the 10% energy loss is total, or every time it goes up or down, but it isn't a problem because 10% of 90,000 is 9,000, which means it would have 81,000J of energy on the way back up IF it loses energy due to friction on the way back up also.
The only physical law you need to prove this is the Law of Conservation of Energy: no energy is lost, only transformed; 10% of the energy becomes heat, the rest remains mechanical energy, which is the reason why the reasoning above works.
Answer:
Face - off
Explanation:
Face - off is a term used in ice hockey to start periods of play and also to restart the play/action after a previous stoppage.
This face - off involves two opposing players from the 2 opposing teams standing opposite each other at an approximate distance of one sticks blade with the game official dropping the puck between them. Thereafter, two players will then to try to gain possession of the puck.
Answer:
The generator will work only if the magnetic field associated with the turns of coil change.
here both magnet and coil are stationary with respect to each other so no electromagnetic induction would take place. so no indiced current will be produced.
the student has to introduce some mechanism either to rotate the coil or the magnet
Answer:
50,000 V/m
Explanation:
The electric field between two charged metal plates is uniform.
The relationship between potential difference and electric field strength for a uniform field is given by the equation

where
is the potential difference
E is the magnitude of the electric field
d is the distance between the plates
In this problem, we have:
is the potential difference between the plates
d = 15 mm = 0.015 m is the distance between the plates
Therefore, rearranging the equation we find the strength of the electric field:

Answer:
Initial speed of the spaceship 1, v = 2 m/s
Explanation:
Given that :
Mass of spaceship 1 and 2 that have equal mass are 300 kg
Initial momentum of the spaceship 1 is 600 kg-m/s
To find :
We need to find the initial momentum of spaceship 1.
Solve :
The momentum of an object is equal to the product of mass and its velocity. Its SI unit is kg-m/s. Mathematically, it is given by :



v = 2 m/s
Therefore the initial speed of spaceship 1 is 2 m/s. Hence, this is the required solution.