(3) 10.1 second
Using equation of motion 500 = (0.5)(9.81)t^2. Rearranging, t = sqrt(1000/9.81) = 10.1s
The formula for momentum is p = m*v
The conservation of momentum suggests:
m*vi = m*vf (initial mass times initial velocity = final mass times final velocity or initial momentum = final momentum)
(0.0010)(52.2) = (0.0010 + 3.3)vf
vf = (0.0010)(52.2)/(0.0010 + 3.3) = 0.0522/3.301 ≈ 0.01581 m/s
To the nearest thousandth ≈ .016 m/s
Answer:
Explanation:
Potential energy is the energy stored within an object, due to the object's position, arrangement or state
Answer:
sorry but I can understand the question
Answer:
C.) A high velocity and Large mass.
Explanation:
Momentum of any object is defined by following formula
Here
: m = mass of object
v = velocity of object
now we know that since momentum is product of mass and velocity
So in order to have more momentum we need the value of this product to be more. So this product will me large is both the physical quantity will be more in magnitude. So if mass is large and velocity will be more then the product of them will be large and hence the momentum of object will be more. Btw I had that question too.