Answer:
A. Heat flows from an object at higher temperature to an object at lower temperature
Explanation:
The option A obeys the 2nd law of thermodynamics. The heat will flow from the object at higher temperature to the object at Lower temperature till they reach an equilibrial state.
Heat doesn’t necessarily flow from an object with higher thermal energy to an object with lower thermal energy because an object has a higher thermal energy when it’s mass is more than the other. This makes B wrong.
C is wrong because heat moves from an object with higher temperature to objects with Lower temperature regardless of the state of matter.
Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
The sea level would rise because the snow and glaciers are water
First of all, let's just talk about the speed, and not get wound up
in the velocity. OK ?
If a fly is sitting on the rim of the wheel and the wheel is rotating, then for
each full revolution of the wheel, the fly travels the circumference of the
wheel, which is (2 π) x (radius of the wheel).
In 'N' revolutions, the fly travels (2 N π) x (the radius). and so on.
So if the wheel is going, let's say 71 revs per minute (RPM), a point
on the rim is moving at (2 π times 71) x (the radius) per minute.
Another way to say it:
Speed of a point on the circle = (2 π) x (rotation frequency) x (radius).
The 'rotation frequency' takes care of the unit of time, and the 'radius'
takes care of the unit of length, so the result is a speed.
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.