To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:

Where,
indicates the intensity of the light before passing through the polarizer,
I is the resulting intensity, and
indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
Since we have two objects the law would be,

Replacing the values,



Therefore the intesity of the light after it has passes through both polarizers is 
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
true if you are refering to the desing of the experimnt as it does identify the variable
Because atoms is something that pops or has bubbles in it
Answer:
r = 58.44 [m]
Explanation:
To solve this problem we must use the following equation that relates the centripetal acceleration with the tangential velocity and the radius of rotation.
a = v²/r
where:
a = centripetal acceleration = 15.4 [m/s²]
v = tangential speed = 30 [m/s]
r = radius or distance [m]
r = v²/a
r = 30²/15.4
r = 58.44 [m]