1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
4 years ago
12

When a river​ flows, the strength or force of the river depends on how far the river falls vertically compared to how far it flo

ws horizontally. Find the slope of the river shown to the right.​ (Hint: The slope of a river is​ positive.)
Mathematics
1 answer:
strojnjashka [21]4 years ago
8 0

The figure is missing. There are several problems with same wording but different numbers

Here, we can use:

  • Horizontal distance: 258 feet

  • Vertical fall: 56.0 feet

Answer:

  • Slope = 56.0 ft / 258 ft ≈ 0.217

Explanation:

The <em>slope</em> measures how the rate of change of the vertical distance (vertical fall) with respect to the horizontal distance.

There are several forms to express this with words, which represent the same formula. Here are some of them:

  • Slope = rise / run
  • Slope = vertical change / horizontal change
  • Slope = change in y / change in x
  • Slope = Δy / Δx
  • Slope = (y₂ - y₁) / (x₂ - x₁)

As said, all those forms mean the same; they are equivalent.

Here, we have vertical fall = 56.0 feet, and horizontal distance = 258 feet, and by specifications of the problem (in the hint) the slope must be positive. Thus, you get:

  • Slope = vertical fall / horizontal distance = 56.0 feet / 258 feet ≈ 0.217
You might be interested in
Need Help which expression is equal to
a_sh-v [17]

Answer:

4^0

Step-by-step explanation:

whenever the number is to the power of 0 it equals 1

4^5 x 4^-7 ÷ 4^-2 = 1

4^0 = 1

3 0
3 years ago
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
How do I use the arc length to find the circumference ?
Mashutka [201]
<span>arc length   =   circumference • [central angle (degrees) ÷ 360]

Solving this equation for circumference:
</span>
<span>circumference = arc length / (central angle / 360)

</span><span>circumference = 12 / (85/360)

</span>circumference = 12 / <span><span>0.2361111111 </span>
</span>
<span>circumference = </span> <span> <span> <span> 50.8235294118 </span> </span> </span>

Source:
http://www.1728.org/radians.htm


8 0
3 years ago
Help please can someone break these problems down for me so I can show my son thanks in advance!:)
Lelu [443]
For the second question (5/6)/(4) is the same as (5/6)*(1/4) so just multiply across and you get (5/24)
3 0
3 years ago
Read 2 more answers
3(x + y + h)=<br> Can someone help me with this
Nastasia [14]

Answer:

3x +3y +3h

that’s the farthest you can solve since you don’t know the variable’s values

4 0
3 years ago
Other questions:
  • According to the table, what is the increase in monthly pay for each hour of training?
    9·2 answers
  • Which is the correct estmate for 63,621 - 41,589 rounded to the nearest hundred?
    5·1 answer
  • Solve the inequality:2y-2&lt;14
    6·1 answer
  • Logan has 64 inches of trim to make a picture frame. Since he wants to use all of the trim, he decides to make a square frame me
    11·2 answers
  • What is 6.84 x 10-7 written as a decimal number?
    14·1 answer
  • A) ASA<br> C) SASD<br> B) AAS<br> ) SSS
    7·1 answer
  • HELP please im doing a test and it's due in 7 minutes
    15·1 answer
  • Linda made a scale drawing of her classroom for her math project. She used a scale of 1 cm = 2.5 ft. If the length of her classr
    15·1 answer
  • Suppose that poaching reduces the population of an endangered animal by 1% per year. Further suppose that when the population of
    15·1 answer
  • You deposit $4500 into a savings account for 3 years. How much interest do you earn if the savings account has a 5% interest rat
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!