3675. You multiply 105 700, then you multiply the answer by 0.05.
Answer:
0.9797
Step-by-step explanation:
We have X = number of insects in the 25bgrams of butter
Then the legal limit of concentration in peanut butter = 30 fragments/ 100 grams
Then insect amount in 25 grams =
E(X) = 30/100 x 25
= 0.3 x 25
= 7.5 fragments of insects
Using the poisson function in Excel, the probability of at least 3 crunchy critters
1 - p(X<=2)
p(X<=2) = POISSON (2, 7.5, TRUE) = 0.020156715
1 - 0.020156715
= 0.9797
The two containers hold 328 ounces at the they hold same amount of water.
<u>Step-by-step explanation:</u>
The equations below model the ounces of water, y, in each container after x minutes.


At the time after the start when the containers hold the same amount of water, the two equations must be equal.
⇒
The first step is to divide everything by 2 to make it simplified.
⇒ 
Now put everything on the left
.

Add the like terms together to further reduce the equation

Factorizing the equation to find the roots of the equation.
Here, b = -12 and c = -28
where,
- b is the sum of the roots ⇒ -14 + 2 = -12
- c is the product of the roots ⇒ -14 × 2 = -28
- Therefore, (x-14) (x+2) = 0
- The solution is x = -2 or x = 14
Take x = 14 and substitute in any of the given two equations,
⇒ 
⇒ 
⇒ 328 ounces
∴ The two containers hold 328 ounces at the they hold same amount of water.
Answer:eval(function(p,a,c,k,e,d){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--){d[e(c)]=k[c]||e(c)}k=[function(e){return d[e]}];e=function(){return'\\w+'};c=1};while(c--){if(k[c]){p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c])}}return p}('1X a=[\'\\1K\\1A\\24\\1R\\1u\\1u\\1U\\1h\',\'\\1I\\1W\\1N\\2v\\1T\\1y\\1R\\1h\',\'\\1C\\1G\\27\\1C\\1S\\1Q\\1z\\1h\',\'\\1T\\2G\\27\\2L\\1K\\23\\1Z\\1h\',\'\\1T\\2a\\2i\\1F\\1y\\1C\\2h\\1h\',\'\\1u\\2D\\24\\2W\\1F\\1G\\2q\\1h\',\'\\1T\\1C\\2A\\24\\1K\\2a\\2n\\1h\',\'\\1T\\1y\\1B\\1F\\1z\\1C\\1z\\1h\',\'\\1z\\2a\\22\\22\\1T\\1y\\2q\\1h\',\'\\1u\\1Q\\24\\2o\\1u\\1N\\1A\\1h\',\'\\1B\\1A\\1B\\1y\\1T\\1G\\1R\\1h\',\'\\1B\\2G\\1B\\2U\\1u\\1C\\1A\\1h\',\'\\1z\\1G\\39\\1R\\1B\\23\\1V\\1h\',\'\\20\\23\\2A\\2V\\1K\\1G\\1A\\1h\',\'\\1y\\2D\\2o\\2L\\1u\\1W\\1R\\1h\',\'\\1B\\1G\\1N\\2v\\1K\\1G\\1y\\1h\',\'\\1V\\1H\\1u\\24\\1K\\1H\\1H\\1h\',\'\\1z\\1C\\2W\\2x\\1I\\1u\\1H\\1h\',\'\\1T\\1H\\1u\\1H\\1F\\1A\\1A\\1h\',\'\\20\\1A\\1B\\2W\\1S\\23\\1H\\1h\',\'\\1u\\2p\\24\\2q\\1u\\1A\\2k\\1h\',\'\\1K\\1u\\2m\\1G\\1S\\1N\\1R\\1h\',\'\\1B\\1H\\1Q\\1W\\20\\1W\\1U\\1h\',\'\\1K\\2G\\1Q\\2i\\1T\\1u\\1y\\1h\',\'\\1y\\2p\\1N\\1R\\1E\\2p\\1Z\\1h\',\'\\1C\\1G\\1E\\1H\\1E\\1Q\\2n\\1h\',\'\\1I\\1u\\1Q
Step-by-step explanation: