Animals communicate using signals, which can include visual; auditory, or sound-based; chemical, involving pheromones; or tactile, touch-based, cues
Answer:
<h3>Ocean crust is the relatively thin part of the earth's crust which underlies the ocean basins. It is geologically young compared with the continental crust and consists of basaltic rock overlain by sediments.</h3>
Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Hey There!
At neutralisation moles of H⁺ from HCl = moles of OH⁻ from Ca(OH)2 so :
0.204 * 42.8 / 1000 => 0.0087312 moles
Moles of Ca(OH)2 :
2 HCl + Ca(OH)2 = CaCl2 + 2 H2O
0.0087312 / 2 => 0.0043656 moles ( since each Ca(OH)2 ives 2 OH⁻ ions )
Therefore:
Molar mass Ca(OH)2 = 74.1 g/mol
mass = moles of Ca(OH)2 * molar mass
mass = 0.0043656 * 74.1
mass = 0.32 g of Ca(OH)2
Hope that helps!