<h2>
Answer: destroy all information about its speed or momentum</h2>
The Heisenberg uncertainty principle postulates that the fact that <u>each particle has a wave associated with it</u>, imposes restrictions on the ability to determine its <u>position</u> and <u>speed</u> at the same time.
In other words:
<h2>It is impossible to measure <u>simultaneously </u>(according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle. </h2>
So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity.
It should be noted that this uncertainty does not derive from the measurement instruments, but from the measurement itself. Because, even with the most precise devices, the uncertainty in the measurement continues to exist.
Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
It would change into a gas.
Answer:
The water pressure at the bottom of the jar will increase by 1000 Pa.
Explanation:
The Pascal principle states that:
In a fluid, a change in pressure at any point in the fluid is transmitted equally throughout the fluid, as it is occuring everywhere.
If we apply this principle at the case mentioned in the problem, we can say that:
- An initial pressure of 1000 Pa is applied on the top of the fluid (the water)
- According to Pascal's law, this pressure is transmitted with equal intensity (1000 Pa) to every point of the fluid
- So, the water pressure at the bottom of the jar will also increase by the same amount, 1000 Pa
Answer:
The height of the hill is 29.3 cm.
Explanation:
Given that,
The combined mass of a child and sled, m = 57 kg
Initial speed of the sled, u = 0
Speed at the bottom of the sled, v = 2.4 m/s
We need to find the height of the hill. The energy at the bottom and the top will remains the same due to the law of conservation of energy. So,

So, the height of the hill is 29.3 cm. Hence, this is the required solution.