Answer:
A $12.84
Step-by-step explanation:
Sweater was originally $48.00 before tax. $48.00 x 7% tax rate (.07) = $3.36 in tax
So the sweater originally would've cost $48.00 + $3.36 = $51.36
The sale price was 25% off the $48.00. $48.00 x 25% (.25) = $12.00
Then you subtract the $12.00 from the $48.00 to get the new price of $36.00
Now that's before tax, so $36.00 x 7% tax rate (.07) = $2.52 in tax
So the sweater would cost on sale $36.00 + $2.52 = $38.52
To figure out how much she would've saved you subtract the sale price & tax from the original price & tax $51.36 - $38.52 = $12.84
First, find the lowest common denominator. That is 12. You only have to change 3/4 into 12ths.
3/4 = 9/12
11/12 – 9/12 = 2/12 = 1/6
<u>Answer:</u>
x = 0.417 or x = -0.917
<u>Step-by-step explanation:</u>
We are given the following expression and we are to solve it for the variable x:
![x ^2 + \frac { 1 } { 2 } x + \frac { 1 } { 1 6 } = \frac { 4 } { 9 }](https://tex.z-dn.net/?f=%20x%20%5E2%20%2B%20%5Cfrac%20%7B%201%20%7D%20%7B%202%20%7D%20x%20%2B%20%5Cfrac%20%7B%201%20%7D%20%7B%201%206%20%7D%20%3D%20%5Cfrac%20%7B%204%20%7D%20%7B%209%20%7D%20)
We will find the least common multiple of 2. 6 and 9:
![x^2 \times 144 +\frac{1}{2}x \times 144 +\frac{1}{16} \times 144 = \frac{4}{9} \times 144](https://tex.z-dn.net/?f=x%5E2%20%5Ctimes%20144%20%2B%5Cfrac%7B1%7D%7B2%7Dx%20%5Ctimes%20144%20%2B%5Cfrac%7B1%7D%7B16%7D%20%5Ctimes%20144%20%3D%20%5Cfrac%7B4%7D%7B9%7D%20%5Ctimes%20144)
Simplifying it to get:
![144x^2+72x+9=64](https://tex.z-dn.net/?f=144x%5E2%2B72x%2B9%3D64)
![144x^2+72x+9-64=0](https://tex.z-dn.net/?f=144x%5E2%2B72x%2B9-64%3D0)
![144x^2+72x-55=0](https://tex.z-dn.net/?f=144x%5E2%2B72x-55%3D0)
Using the quadratic formula to solve for x:
![x=\frac{-b \pm\sqrt{b^2-4ac} }{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%20%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%20%7D%7B2a%7D)
![x=\frac{-72 \pm\sqrt{72^2-4(144)(-55)} }{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-72%20%5Cpm%5Csqrt%7B72%5E2-4%28144%29%28-55%29%7D%20%7D%7B2a%7D)
or ![0.417](https://tex.z-dn.net/?f=0.417)
or ![-0.917](https://tex.z-dn.net/?f=-0.917)
~Shoto Todoroki here~
Answer:
( n − 2 ) × 180
Step-by-step explanation:
The formula for calculating the sum of interior angles is ( n − 2 ) × 180 ∘ where is the number of sides. All the interior angles in a regular polygon are equal. The formula for calculating the size of an interior angle is: interior angle of a polygon = sum of interior angles ÷ number of sides.
hope this helps :))
Step-by-step explanation:
You must write formulas regarding the volume and surface area of the given solids.
![\bold{\#1\ Rectangular\ prism:}\\\\V=lwh\\SA=2lw+2lh+2wh=2(lw+lh+wh)\\\\\bold{\#2\ Cylinder:}\\\\V=\pi r^2h\\SA=2\pi r^2+2\pi rh=2\pir(r+h)\\\\\bold{\#3\ Sphere:}\\\\V=\dfrac{4}{3}\pi r^3\\SA=4\pi r^2](https://tex.z-dn.net/?f=%5Cbold%7B%5C%231%5C%20Rectangular%5C%20prism%3A%7D%5C%5C%5C%5CV%3Dlwh%5C%5CSA%3D2lw%2B2lh%2B2wh%3D2%28lw%2Blh%2Bwh%29%5C%5C%5C%5C%5Cbold%7B%5C%232%5C%20Cylinder%3A%7D%5C%5C%5C%5CV%3D%5Cpi%20r%5E2h%5C%5CSA%3D2%5Cpi%20r%5E2%2B2%5Cpi%20rh%3D2%5Cpir%28r%2Bh%29%5C%5C%5C%5C%5Cbold%7B%5C%233%5C%20Sphere%3A%7D%5C%5C%5C%5CV%3D%5Cdfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%5C%5CSA%3D4%5Cpi%20r%5E2)
![\bold{\#4\ Cone:}\\\\V=\dfrac{1}{3}\pi r^2h\\\\\text{we need calculate the length of a slant length}\ l\\\text{use the Pythagorean theorem:}\\\\l^2=r^2+h^2\to l=\sqrt{r^2+h^2}\\\\SA=\pi r^2+\pi rl=\pi r^2+\pi r\sqrt{r^2+h^2}=\pi r(r+\sqrt{r^2+h^2})\\\\\bold{\#5\ Rectangular\ Pyramid:}\\\\V=\dfrac{1}{3}lwh\\\\](https://tex.z-dn.net/?f=%5Cbold%7B%5C%234%5C%20Cone%3A%7D%5C%5C%5C%5CV%3D%5Cdfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2h%5C%5C%5C%5C%5Ctext%7Bwe%20need%20calculate%20the%20length%20of%20a%20slant%20length%7D%5C%20l%5C%5C%5Ctext%7Buse%20the%20Pythagorean%20theorem%3A%7D%5C%5C%5C%5Cl%5E2%3Dr%5E2%2Bh%5E2%5Cto%20l%3D%5Csqrt%7Br%5E2%2Bh%5E2%7D%5C%5C%5C%5CSA%3D%5Cpi%20r%5E2%2B%5Cpi%20rl%3D%5Cpi%20r%5E2%2B%5Cpi%20r%5Csqrt%7Br%5E2%2Bh%5E2%7D%3D%5Cpi%20r%28r%2B%5Csqrt%7Br%5E2%2Bh%5E2%7D%29%5C%5C%5C%5C%5Cbold%7B%5C%235%5C%20Rectangular%5C%20Pyramid%3A%7D%5C%5C%5C%5CV%3D%5Cdfrac%7B1%7D%7B3%7Dlwh%5C%5C%5C%5C)
![\\\text{we need to calculate the height of two different side walls}\ h_1\ \text{and}\ h_2\\\text{use the Pythagorean theorem:}\\\\h_1^2=\left(\dfrac{l}{2}\right)^2+h^2\to h_1=\sqrt{\left(\dfrac{l}{2}\right)^2+h^2}=\sqrt{\dfrac{l^2}{4}+h^2}=\sqrt{\dfrac{l^2}{4}+\dfrac{4h^2}{4}}\\\\h_1=\sqrt{\dfrac{l^2+4h^2}{4}}=\dfrac{\sqrt{l^2+4h^2}}{\sqrt4}=\dfrac{\sqrt{l^2+4h^2}}{2}](https://tex.z-dn.net/?f=%5C%5C%5Ctext%7Bwe%20need%20to%20calculate%20the%20height%20of%20two%20different%20side%20walls%7D%5C%20h_1%5C%20%5Ctext%7Band%7D%5C%20h_2%5C%5C%5Ctext%7Buse%20the%20Pythagorean%20theorem%3A%7D%5C%5C%5C%5Ch_1%5E2%3D%5Cleft%28%5Cdfrac%7Bl%7D%7B2%7D%5Cright%29%5E2%2Bh%5E2%5Cto%20h_1%3D%5Csqrt%7B%5Cleft%28%5Cdfrac%7Bl%7D%7B2%7D%5Cright%29%5E2%2Bh%5E2%7D%3D%5Csqrt%7B%5Cdfrac%7Bl%5E2%7D%7B4%7D%2Bh%5E2%7D%3D%5Csqrt%7B%5Cdfrac%7Bl%5E2%7D%7B4%7D%2B%5Cdfrac%7B4h%5E2%7D%7B4%7D%7D%5C%5C%5C%5Ch_1%3D%5Csqrt%7B%5Cdfrac%7Bl%5E2%2B4h%5E2%7D%7B4%7D%7D%3D%5Cdfrac%7B%5Csqrt%7Bl%5E2%2B4h%5E2%7D%7D%7B%5Csqrt4%7D%3D%5Cdfrac%7B%5Csqrt%7Bl%5E2%2B4h%5E2%7D%7D%7B2%7D)
![\\\\h_2^2=\left(\dfrac{w}{2}\right)^2+h^2\to h_2=\sqrt{\left(\dfrac{w}{2}\right)^2+h^2}=\sqrt{\dfrac{w^2}{4}+h^2}=\sqrt{\dfrac{w^2}{4}+\dfrac{4h^2}{4}}\\\\h_2=\sqrt{\dfrac{w^2+4h^2}{4}}=\dfrac{\sqrt{w^2+4h^2}}{\sqrt4}=\dfrac{\sqrt{w^2+4h^2}}{2}](https://tex.z-dn.net/?f=%5C%5C%5C%5Ch_2%5E2%3D%5Cleft%28%5Cdfrac%7Bw%7D%7B2%7D%5Cright%29%5E2%2Bh%5E2%5Cto%20h_2%3D%5Csqrt%7B%5Cleft%28%5Cdfrac%7Bw%7D%7B2%7D%5Cright%29%5E2%2Bh%5E2%7D%3D%5Csqrt%7B%5Cdfrac%7Bw%5E2%7D%7B4%7D%2Bh%5E2%7D%3D%5Csqrt%7B%5Cdfrac%7Bw%5E2%7D%7B4%7D%2B%5Cdfrac%7B4h%5E2%7D%7B4%7D%7D%5C%5C%5C%5Ch_2%3D%5Csqrt%7B%5Cdfrac%7Bw%5E2%2B4h%5E2%7D%7B4%7D%7D%3D%5Cdfrac%7B%5Csqrt%7Bw%5E2%2B4h%5E2%7D%7D%7B%5Csqrt4%7D%3D%5Cdfrac%7B%5Csqrt%7Bw%5E2%2B4h%5E2%7D%7D%7B2%7D)
![SA=lw+2\cdot\dfrac{lh_1}{2}+2\cdot\dfrac{wh_2}{2}\\\\SA=lw+2\!\!\!\!\diagup\cdot\dfrac{l\cdot\frac{\sqrt{l^2+4h^2}}{2}}{2\!\!\!\!\diagup}+2\!\!\!\!\diagup\cdot\dfrac{w\cdot\frac{\sqrt{w^2+4h^2}}{2}}{2\!\!\!\!\diagup}\\\\SA=lw+\dfrac{l\sqrt{l^2+4h^2}}{2}+\dfrac{w\sqrt{w^2+4h^2}}{2}\\\\SA=\dfrac{2lw}{2}+\dfrac{l\sqrt{l^2+4h^2}}{2}+\dfrac{w\sqrt{w^2+4h^2}}{2}\\\\SA=\dfrac{2lw+l\sqrt{l^2+4h^2}+w\sqrt{w^2+4h^2}}{2}](https://tex.z-dn.net/?f=SA%3Dlw%2B2%5Ccdot%5Cdfrac%7Blh_1%7D%7B2%7D%2B2%5Ccdot%5Cdfrac%7Bwh_2%7D%7B2%7D%5C%5C%5C%5CSA%3Dlw%2B2%5C%21%5C%21%5C%21%5C%21%5Cdiagup%5Ccdot%5Cdfrac%7Bl%5Ccdot%5Cfrac%7B%5Csqrt%7Bl%5E2%2B4h%5E2%7D%7D%7B2%7D%7D%7B2%5C%21%5C%21%5C%21%5C%21%5Cdiagup%7D%2B2%5C%21%5C%21%5C%21%5C%21%5Cdiagup%5Ccdot%5Cdfrac%7Bw%5Ccdot%5Cfrac%7B%5Csqrt%7Bw%5E2%2B4h%5E2%7D%7D%7B2%7D%7D%7B2%5C%21%5C%21%5C%21%5C%21%5Cdiagup%7D%5C%5C%5C%5CSA%3Dlw%2B%5Cdfrac%7Bl%5Csqrt%7Bl%5E2%2B4h%5E2%7D%7D%7B2%7D%2B%5Cdfrac%7Bw%5Csqrt%7Bw%5E2%2B4h%5E2%7D%7D%7B2%7D%5C%5C%5C%5CSA%3D%5Cdfrac%7B2lw%7D%7B2%7D%2B%5Cdfrac%7Bl%5Csqrt%7Bl%5E2%2B4h%5E2%7D%7D%7B2%7D%2B%5Cdfrac%7Bw%5Csqrt%7Bw%5E2%2B4h%5E2%7D%7D%7B2%7D%5C%5C%5C%5CSA%3D%5Cdfrac%7B2lw%2Bl%5Csqrt%7Bl%5E2%2B4h%5E2%7D%2Bw%5Csqrt%7Bw%5E2%2B4h%5E2%7D%7D%7B2%7D)