Always
Anytime point A is on line BC, AB+BC=BC
Answer:
<u>It</u><u> </u><u>is</u><u> </u><u>(</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>)</u><u>³</u><u> </u><u>-</u><u> </u><u>9</u><u>x</u><u>(</u><u>3</u><u> </u><u>-</u><u> </u><u>x</u><u>)</u>
Step-by-step explanation:
Express 27 in terms of cubes, 27 = 3³:

From trinomial expansion:

open first two brackets to get a quadratic equation:

expand further:

take y to be 3, then substitute:

Equation would be: Y = 25 + 5x
Where, x = number of weeks
So, when x = 1, Y = 25 + 5(1) = 25+5 = 30
When x = 2, Y = 25 + 5(2) = 25 + 10 = 35
x = 3, Y = 25 + 5(3) = 25 + 15 = 40
So, Mark the coordinates: (0, 25), (1, 30), (2, 35), (3, 40), (4, 45), (5, 50)...
And draw a line...Graph is done!
Hope this helps!
Ya, what is the question?