Answer:
The number of months it will take for Kaylee to make as much as Donna is 23 months
Step-by-step explanation:
Here we have amount Donna makes = $9.75/hour
Amount Kaylee makes = $4/hour with $0.25 monthly raise
Therefore, number of months, Y before Kaylee makes as much s Donna is given by the following expression;
4 + Y × 0.25 = 9.75
0.25·Y = 9.75 - 4 = 5.75
That means in 23 months, Kaylee will make as much as Donna per hour.
Answer:
Este acontecimento se repetirá 300 dias depois.
Step-by-step explanation:
Quando os eventos se repetirão no mesmo dia?
Cada evento tem uma frequência.
Eles ocorrem simultaneamente a cada x dias, e x é dado pelo MMC(Mínimo Múltiplico Comum) entre as frequência.
Neste problema:
A cada 15 dias o avô visita.
A cada 100 dias o tio visita.
A cada 12 dias vai à praia.
Quantos dias depois este acontecimento se repetirá?
Os três no mesmo dia vão se repetir após x dias, em que x é dado pelo MMC de 15, 100 e 12
MMC de 15, 100 e 12
Fatorando simultâneamente estes valores:
15 - 100 - 12|2
15 - 50 - 6|2
15 - 25 - 3|3
5 - 25 - 1|5
1 - 5 - 1|5
1 - 1 - 1
Então:
mmc(15,100,12) = 2*2*3*5*5 = 300
Este acontecimento se repetirá 300 dias depois.
Answer:
46
Step-by-step explanation:
We are given that a class's test scores are normally distributed with an average score of 60.
We know that the curve of a normal distribution is symmetric about its mean.
60-14=46
60+14=74
Hence, the point 46 lies to the left of the mean and 74 lies to the right of the mean, and the two points have the same function value.
No because if that happened they wouldn’t be able to do it again so yeah
Answer: 0.8413
Step-by-step explanation:
Given : Henry has collected data to find that the typing speeds for the students in a typing class has a normal distribution.
Mean :
Standard deviation :
Let x be the random variable that represents the typing speeds for the students.
The z-score :-
For x= 51
Using the standard normal distribution table ,the probability that a randomly selected student has a typing speed of less than 51 words per minute :-
Hence, the probability that a randomly selected student has a typing speed of less than 51 words per minute = 0.8413