I need a picture so i can help you out.
96.5 times 2.54
the answer is 245.11
3 + 5(9+2n)
Distribute the 5 to the items in the parentheses
3 + 5(9+2n)
3 + 45 + 10n
Combine like terms
48 + 10n
f
'
(
x
)
=
1
(
x
+
1
)
2
Explanation:
differentiating from first principles
f
'
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
f
'
(
x
)
=
lim
h
→
0
x
+
h
x
+
h
+
1
−
x
x
+
1
h
the aim now is to eliminate h from the denominator
f
'
(
x
)
=
lim
h
=0
(
x
+
h
)
(
x
+
1
)−
x
(
x
+
h
+
1)
h
(
x
+
1
)
(
x
+
h
+
1
)
f
'
(
x
)
=
lim
h
→
0
x
2
+
h
x
+
x
+
h
−
x
2
−
h
x
−
x
h
(
x
+
1
)
(
x+h
+
1
)
f
'
(
x
)
=
lim
h
→
0
h
1
h
1
(
x
+
1
)
(
x
+
h
+1
)
f
'
(
x
)
=
1
(
x
+
1
)
2
This is an arithmetic sequence (graph is a line), so function:
a(n) = First term + (n-1) * Common Difference
Here First term = 42 and Common difference = 34 - 36 = -2 so

Answer B.