Answer:
the pressure to which this volume of air must be compressed in order to fit into the air tank is 28.5478 atm
Explanation:
the solution is attached in the Word file
Answer: increases
Explanation:
Increase in the temperature of a reaction system will cause the molecules of the reactants to possess higher kinetic energy which they would use to travel more randomly in the system, colliding more frequently with other excited molecules and with the wall of the containing vessel.
Thus, if temperature is increased, the number of collision per second also increases.
Answer:
The correct set of measurement is D
It is due to a lack of providable energy to the next trophic level of the energy pyramid. Primary consumers only obtain around 10% of energy that producers have, and the energy depletes as you move further and further up the food chain, until you reach the tertiary consumers which have the least amount of energy at their disposal, meaning there are less of them than other organisms further down the energy pyramid.
Hope this helped!
Answer : The cell potential for this reaction is 0.50 V
Explanation :
The given cell reactions is:

The half-cell reactions are:
Oxidation half reaction (anode): 
Reduction half reaction (cathode): 
First we have to calculate the cell potential for this reaction.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Zn^{2+}]}{[Pb^{2+}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BPb%5E%7B2%2B%7D%5D%7D)
where,
F = Faraday constant = 96500 C
R = gas constant = 8.314 J/mol.K
T = room temperature = 
n = number of electrons in oxidation-reduction reaction = 2
= standard electrode potential of the cell = +0.63 V
= cell potential for the reaction = ?
= 3.5 M
= 
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this reaction is 0.50 V