Answer : The value of
for this reaction is 36.18 kJ
Explanation :
First law of thermodynamic : It states that the energy can not be created or destroyed, it can only change or transfer from one state to another state.
As per first law of thermodynamic,

where,
= internal energy of the system
q = heat added or rejected by the system
w = work done
As we are given that:
q = 38.65 kJ
w = -2.47 kJ (system work done on surrounding)
Now put all the given values in the above expression, we get:


Therefore, the value of
for this reaction is 36.18 kJ
Answer:
0.05
moles
Explanation:
In a mole of any substance, there exist
6.02⋅1023
units of that substance.
So here, we got:
3.01⋅1022Mg atoms⋅1mol6.02⋅1023M gatoms=0.05mol
<span>False,
This is because when you can easily ionize and atom or the chances of it being ionizable are quite high, it means that that particular atom have very low ionization potential that is the reason why it was easily ionizable
An atom with a high ionization power and a firmly negative electron fondness will both pull in electrons from different particles and oppose having its electrons taken away; it will be an exceedingly electronegative molecule.</span>
Answer:
TRUE
Explanation:
Production of Hydrocarbons from Natural Gas is as stated below:
Natural gas liquids include propane, butane, pentane, hexane, and heptane, but not methane and not <u>always</u> ethane, (<em>may include it </em><em><u>sometimes</u></em><em>.</em>) s<em>ince these hydrocarbons need refrigeration to be liquefied.</em>
So to put them all in the same units we have
<span>2500 mL </span>
<span>250 mL </span>
<span>25mL </span>
<span>2,500,000,000mL </span>
<span>So the third one is the smallest</span>