Answer:
A) Separating funnel method
B) Simple Distillation
C) Evaporation
D) Sublimation
E) It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Explanation:
A)
B) Kerosene and petrol are both miscible liquids and the difference in their boiling point temperature is not more than 25°C. Thus, we make use of Simple distillation.
C) Can be separated by evaporation where the water is boiled and it evaporates and leaves the salt behind
D) To separate camphor from salt, we use sublimation so the camphor can change directly from solid to the gas state without passing through the liquid state.
E) Chromatography is used to separate components of a mixture.
It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
When energy transforms into mass, the amount of energy does not remain the same. When mass transforms into energy, the amount of energy also does not remain the same. However, the amount of matter and energy remains the same. ... You would weigh much less on the Moon because it is only about one-sixth the mass of Earth. So the answer is D
Answer:
One of the bonds in nitrate is shorter than the other two.
Explanation:
We would firstly need to draw the Lewis structure for nitrate anion. To do this, let's follow the standard steps:
- calculate the total number of valence electrons: five from nitrogen, each oxygen contributes 6, so a total of 18 from oxygen atoms, as well as one from the negative charge, we have a total of 24 valence electrons;
- assign the central atom, usually this is the atom which is single; in this case, we have nitrogen as our central atom;
- assign single bonds to all the terminal atoms (oxygen atoms);
- assign octets to the terminal atoms and calculate the number of electrons assigned;
- the number of electrons assigned is 24, so no lone pairs are present on nitrogen;
- calculate the formal charges: each oxygen has a formal charge of -1 (formal charge is calculated subtracting the sum of lone pair electrons and bonds from the number of valence electrons of that atom); nitrogen has a formal charge of +2;
- nitrogen doesn't have an octet as well, so we'll both minimize its formal charge and make it obtain an octet if we make one double bond N=O.
Therefore, we may have 3 resonance structures, as this double bond might be formed with any of the 3 oxygen atoms.
By definition, double bonds are shorter than single ones, so one of the bonds is shorter than the other two.