......
Before the book is thrown, the potential energy has the highest amount, and when the book falls, the energy changes to energy movement, and when the book falls on the ground, the energy changes again to the potential energy.
T = 2π × √ (m / k)
T period
m mass
k spring constant
solve for k
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
Answer:
Vinegar is a homogenous mixture of acetic acid and water. As the mixture created has only one phase it is a solution. ... There are no chemical bonds created between water and the acid and it is possible to separate the two without breaking any chemical bonds.
Explanation:
Answer:
A mass of 10 kilograms lifted 10 meters in 5 seconds.
Explanation:
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have

Given the following data;
Mass = 10kg
Height = 10m
Time = 5 seconds
We know that acceleration due to gravity is equal to 9.8 m/s²

Hence, a mass of 10 kilograms lifted 10 meters in 5 seconds would produce the most power.