Put the object or material on a scale to figure out<span> its mass. 3. Divide the mass by the volume to </span>figure out the density<span> (p = m / v). You may also need to know </span>how to calculate<span> the volume of a </span>solid s<span>o use the formula</span>
C: the mechanical energy isn't conserved. Some energy was lost to friction.
Answer:
(A)The water will freeze.
Explanation:
Heat is the energy that when transferred causes change in temperature. If heat is added to a body by some process the bodies temperature increases and if heat is removed from a body by some process the temperature reduces.
In this case if enough heat is removed from the room the internal movement of the water particles will slow down causing the water to form crystal lattice thus forming ice. So, the water will freeze.
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
Answer:
I'm pretty Sure. Yea look.
Explanation:
Up to 60% of the human adult body is water. According to H.H. Mitchell, Journal of Biological Chemistry 158, the brain and heart are composed of 73% water, and the lungs are about 83% water. The skin contains 64% water, muscles and kidneys are 79%, and even the bones are watery: 31%.