Answer:
T=575.16K
Explanation:
To solve the problem we proceed to use the 1 law of diffusion of flow,
Here,

is the rate in concentration
is the rate in thickness
D is the diffusion coefficient, where,

Replacing D in the first law,

clearing T,

Replacing our values



<span> B. A person moving a ball through a stream of water</span>
Answer:
(a). The spring compressed is
.
(b). The acceleration is 1.5 g.
Explanation:
Given that,
Acceleration = a
mass = m
spring constant = k
(a). We need to calculate the spring compressed
Using balance equation

....(I)
The spring compressed is
.
(b). If the compression is 2.5 times larger than it is when the mass sits in a still elevator,
The compression is given by

Here, acceleration is zero
So, 
We need to calculate the acceleration
Put the value of x in equation (I)




Hence, (a). The spring compressed is
.
(b). The acceleration is 1.5 g.
Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision