Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M
Answer:
Model
Theory
Ellipse
Explanation:
Stan One Direction for better grade
Answer:
I think it's B but I could be wrong so really sorry if I am
Iodine is one of seven elements that usually form as diatomic molecules. These other "diatomics" are

and

. They typically bond to themselves.
Iodine has seven valence electrons. Using valence shell electron pair repulsion (VSEPR) theory, we can predict the Lewis dot structure for

. We see there are fourteen electrons, and we can make a covalent bond, leaving three lone pairs on each atom. The bond replaces two electrons, so the number of electrons shared is two.