Answer:
"A", "water changes from a gas to a solid to a liquid", according to this phase diagram, at at 0°C, as pressure is increased from 0atm to 10atm.
Explanation:
The question asks what happens at 0°C, as pressure is increased from 0atm to 10atm.
According to the question, the temperature is held constant. The pressure changes. In the phase diagram, we find the temperature 0°C on the horizontal axis, and all points where the temperature are 0°C are along that vertical line.
Since the pressure starts at 0atm and increases to 10atm, we start at the bottom, and move upward along that line, to see what phases of matter the substance changes to.
At the bottom, it is initially in a "gas" phase. As it moves up, it transitions to a "solid" phase. Later, as it continues moving up, it changes again into a "liquid" phase.
Thus, the answer would be "A", "water changes from a gas to a solid to a liquid", according to this phase diagram, at at 0°C, as pressure is increased from 0atm to 10atm.
Remember pH=-log(H ions). So it would be pH=-log(10^-7).
The answer is (2) KNO3. This depends on the solubility of these four compounds at 10℃. For NaCl, it is 35.8 g, For NaNO3, 80.8 g. KCl, 31.2 g. KNO3, 21.9g. So only KNO3 is less than 25.0 g.
<u>Answer:</u> The number of
ions dissociated are
<u>Explanation:</u>
We are given:
pH = 2.07
Calculating the value of pOH by using equation, we get:

To calculate hydroxide ion concentration, we use the equation to calculate pOH of the solution, which is:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
pOH = 11.93
Putting values in above equation, we get:
![11.93=-\log[OH^-]](https://tex.z-dn.net/?f=11.93%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=10^{-11.93}=1.17\times 10^{-12}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-11.93%7D%3D1.17%5Ctimes%2010%5E%7B-12%7DM)
To calculate the number of moles for given molarity, we use the equation:

Molarity of solution = 
Volume of solution = 1243 mL = 1.243 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

According to mole concept:
1 mole of a compound contains
number of particles
So,
number of
will contain =
number of ions
Hence, the number of
ions dissociated are