When you work out it helps clear your thoughts and think of nothing. It makes you feel good.
Answer:
a)-2m/s^2
b)27.2m/s
Explanation:
Hello! The first step to solve this problem is to find the mass of the block remembering that the definition of weight force is mass by gravity (g=9.8m / s ^ 2)
W=455N=weight
W=mg
W=455N=weight

The second step is to draw the free body diagram of the body (see attached image) and use Newton's second law that states that the sum of the forces is equal to mass by acceleration

for point b we use the equations of motion with constant acceleration to find the velocity

Where
Vf = final speed
Vo = Initial speed
=0
A = acceleration
=2m/s
X = displacement
=6.8m
Solving

Is there any other information given? I don't think you can solve this without a time
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.