Answer:
8.0 N
Explanation:
Force: This can be defined as the mass of a body and its acceleration. The S.I unit of Force is Newton (N).
Mathematically, Fore is expressed as
F = ma ........................... equation 1
Where F = force, m = mass, a = acceleration.
and
I = mΔv
Δv = I/m ............................ Equation 2
Where I = impulse, m = mass, Δv = change in velocity
Given: I = 6.0 Newton-seconds, m = 0.1 kilogram.
Substituting into equation 2
Δv = 6.0/0.1
Δv = 60 m/s.
But
a = Δv/t
where t = time = 0.75 seconds.
a = 60/0.75
a = 80 m/s²
Substitute the values of a and m into equation 1.
F = 0.1(80)
F = 8.0 N.
Thus the average force produced = 8.0 N
Answer:
Explanation:
Given that,
A point charge is placed between two charges
Q1 = 4 μC
Q2 = -1 μC
Distance between the two charges is 1m
We want to find the point when the electric field will be zero.
Electric field can be calculated using
E = kQ/r²
Let the point charge be at a distance x from the first charge Q1, then, it will be at 1 -x from the second charge.
Then, the magnitude of the electric at point x is zero.
E = kQ1 / r² + kQ2 / r²
0 = kQ1 / x² - kQ2 / (1-x)²
kQ1 / x² = kQ2 / (1-x)²
Divide through by k
Q1 / x² = Q2 / (1-x)²
4μ / x² = 1μ / (1 - x)²
Divide through by μ
4 / x² = 1 / (1-x)²
Cross multiply
4(1-x)² = x²
4(1-2x+x²) = x²
4 - 8x + 4x² = x²
4x² - 8x + 4 - x² = 0
3x² - 8x + 4 = 0
Check attachment for solution of quadratic equation
We found that,
x = 2m or x = ⅔m
So, the electric field will be zero if placed ⅔m from point charge A, OR ⅓m from point charge B.
Answer:
98 kg
Mass is given as 10 kg. Therefore, Weight = 10 kg * 9.8 m/s^2. Weight = 98 kg.m/s^2. = 98 Newtons.
Explanation:
plz mark me brainleast
All of the following would be questions that could be scientifically investigated except A.
That is an opinion and cannot become a fact.