Answer:
9.81 × 10 = 98.1 meters
vertical displacement is s=1/2 at^2 + vt
initial vertical velocity is 0 so s=1/2 at^2
a in this instance is gravitational acceleration so 60m= 1/2 (9.81)t^2
solve for t, t = 3.497s. //I corrected this answer as just now I misread horizontal as vertical.
Answer:
Volume of the sample: approximately
.
Average density of the sample: approximately
.
Assumption:
.
.- Volume of the cord is negligible.
Explanation:
<h3>Total volume of the sample</h3>
The size of the buoyant force is equal to
.
That's also equal to the weight (weight,
) of water that the object displaces. To find the mass of water displaced from its weight, divide weight with
.
.
Assume that the density of water is
. To the volume of water displaced from its mass, divide mass with density
.
.
Assume that the volume of the cord is negligible. Since the sample is fully-immersed in water, its volume should be the same as the volume of water it displaces.
.
<h3>Average Density of the sample</h3>
Average density is equal to mass over volume.
To find the mass of the sample from its weight, divide with
.
.
The volume of the sample is found in the previous part.
Divide mass with volume to find the average density.
.
The balloon was 30.65 meters above ground.
ANSWER: A
The particle's acceleration is 5.1 m/s²
<h3>
What is Acceleration ?</h3>
Acceleration can be defined as the rate at which velocity is changing. It is a vector quantity and it is measured in m/s²
Given that a particle is moving along a straight line with constant acceleration has a velocity of 2.35 m/s at t=3.42 s, and a velocity of -8.72 m/s at t=5.59s
The given parameters are;
Acceleration a = ΔV ÷ ΔT
a = (2.35 + 8.72) / (5.59 - 3.42)
a = 11.07 / 2.17
a = 5.1 m/s²
Therefore, the particle's acceleration is 5.1 m/s²
Learn more about Acceleration here: brainly.com/question/9069726
#SPJ1