Answer:
0.0192A
Explanation:
Since, the reading of the galvanometer is 0 A, the voltage across the resistance R will be:
Step 1
VR = V2
VR = 3.00v
Step 2
Calculating the current through the resistance R as below,
IR = V1 - V2 /R1
IR = 12 - 3 /468
IR =0.0192A
It's a form of mechanical energy
<span>The Gravitational Force of an object is a measure of the amount of matter it contains. on the other hand __Matter__ is a measure of the gravitational force on an object. I hope it helps :)</span>
Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
P = density × gravity acceleration × height
P = 1200 × 9.81 × 15/100
P = 1765.8