Ok i will answer for real this time. Please give me brainliest.
<span>The Answerr is:
5.12*10^15. Since e=h*f, f=e/h. 3.4*10^(-18)/h.
</span>i am so sorry i was doing a challenge and i needed answers to get 100 pts.
Hope I Helped
~TeenOlafLover <3
If the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
Doppler effect states that, if a person is standing still and a source ( sound / light ) is moving towards him, the frequency of the wave emitted from the object will increase and if the source ( sound / light ) is away from him, the frequency of the wave emitted from the object will decrease.
So, if the light from the sun has higher frequencies from one side of the sun than from the other side, it means that the Sun is rotating. The higher frequencies points are the points that rotating towards Earth and lower frequencies points are the points that rotating away from Earth.
Therefore, if the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
To know more about Doppler Effect
brainly.com/question/15318474
#SPJ1
Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.
Answer:
Explanation:
Total Resistance, Rt = (0.35 + 0.002 + 5200 + 0.5 + 0.008 + 1100) = 6300 ohms
a) Capacity of transformer, Pt = 150KVA = 150,000 W
Input Voltage, Vp = 2.8 KV = 2800 V
Current, Ip = 150000/2800 = 53.57 A
Input impedance, Zp = Vp/Ip = 2800/5357 = 52.27 ohms
b) i) Input current = 53.57 A
ii) Voltage, V = Ip * Rt = 53.57 X 6300 = 337.5 KV
iii) Power, P = I² * Rt = (53.57)² X 6300 = 18.08 MW
iv) Power factor = 0.83
Fluorine (F) has higher potential energy as Neon (N) is a noble/inert gas.
Fluorine will lose another electron to gain stability.