Answer:
statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.
Explanation:
The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.
The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction
here, the downward direction signifies the downward motion parallel to the inclined plane.
Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.
Hence, for the block to stop sliding the the above statement should be true.
Wood isn’t a medium. Pls give brainliest
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s
Answer:
The momentum before is equal to the momentum after
Explanation:
It is equal and should level out in an equation.
Answer:
5
Explanation:
The d subshell has 5 orbitals, each capable of holding a maximum of two electrons. Hund's rule tells us that every orbital in a sub-level must first be singly occupied by electrons before any orbital is doubly occupied. Therefore five electrons will fill the five orbitals within the d subshell.