<span> Space exploration has developed better spacesuits.</span>
Answer:
b)
Explanation:
If the charge is released at rest in an electric field, it will move along the electric field, going to regions of higher electric potential if it is a negative charge (against the field direction) and towards lower potential regions if it is positive (along the field). This means that the charge will gain kinetic energy, energy that only can come from a decrease in the electric potential energy.
For a positive charge: ΔEp = q*ΔV < 0 (as ΔV < 0)
For a negative charge: ΔEp = (-q) *ΔV < 0 (as ΔV > 0)
(198,000 joule / 15 minute) x (minute / 60 sec) = 220 joule/sec = <em>220 watts
</em>
Answer:
.7917 m/s
Explanation:
This is a conservation of momentum question. You have an object initially at rest (cart) so that object is initially at 0 momentum. Indiana Jones is 83.5 kg and running 3.75 m/s so he starts with a momentum of 313.125 kg * m/s because momentum is equal to mass * velocity. Once the person jumps in the cart, the cart and the person can be considered one object and by conservation of momentum, the momentum of the Indiana-cart system is equal to 313.125 kg * m/s. By that, we can set that momentum equal to the combined mass * joint velocity. So 313.125 = (83.5kg + 312kg) * joint velocity. Then just solve for the velocity. The answer should be smaller than the intial velocity of the person of 3.75 m/s because the mine cart is HUGE at 312kg.
Answer:
The mass of the solution is 120 g.
Explanation:
The mass of the solution is given by:

Where:
: is the mass of the solution
: is the mass of the solvent
: is the mass of the solute
In the solution, the solvent is the majority compound (in mass) and the solute is the minority (in mass), so the solvent is the water and the solute is sodium chloride.
Hence, the mass of the solution is:
I hope it helps you!