Answer:
3658.24m
Explanation:
Hello!
the first thing that we must be clear about is that the train moves with constant acceleration
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf = final speed
=160km/h=44.4m/s
Vo = Initial speed
=42.9km/h=11.92m/s
A = acceleration
=0.25m/s^2
X = displacement
solving

the distance traveled by the train is 3658.24m
Answer:
The electric field intensity is <u>30000 N/C.</u>
Explanation:
Given:
Magnitude of the point charge is, 
Distance of the given point from the point charge is, 
Electric field intensity is directly proportional to the magnitude of point charge and inversely proportional to the square of the distance of the point and the given charge.
Therefore, electric field intensity 'E' at a distance of 'd' from a point charge 'q' is given as:

Plug in
. Solve for 'E'.

Therefore, the electric field intensity at a point 3 cm from the point charge is 30000 N/C.
<span>The outermost energy level of an element are called the valence shell, that holds the valence electrons. they consist of the highest energy level. In aluminum, the valence electrons are 3. </span>
Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
Explanation:
It varies with altitude, but at sea level, it's 9.8 m/s².