1. Based on Scenario A, multiple frames will minimize re-transmission overhead and should be preferred in the encapsulation of packets.
2. Based on Scenario B, the encapsulation of packets should be in a single frame because of the high level of network reliability and accuracy.
<u>Justification:</u>
There will not be further need to re-transmit the packets in a highly reliable and accurate network environment, unlike in an environment that is very prone to errors. The reliable and accurate network environment makes a single frame economically better.
Encapsulation involves the process of wrapping code and data together within a class so that data is protected and access to code is restricted.
With encapsulation, each layer:
- provides a service to the layer above it
- communicates with a corresponding receiving node
Thus, in a reliable and accurate network environment, single frames should be used to enhance transmission and minimize re-transmission overhead. This is unlike in an environment that is very prone to errors, where multiple frames should rather be used to minimize re-transmission overhead.
Learn more about encapsulation of packets here: brainly.com/question/22471914
Every organism may classified into seven level of classifications, such that each level contains organisms with similar characteristics. Kingdom is the largest and the broadest level of classification while species is the smallest and most specific level of classification. Therefore from the largest to the smallest the order is as follows:
Kingdom
Phylum
Class
Order
Family
Genus
Species
The correct option is: (A) <span>The energy before is equal to the energy afterward.
Explanation:
According to the law of conservation of Energy, energy can neither be created nor destroyed; it can only be transformed into one form or another. It means that the total initial energy must be equal to the total final energy of the system. By considering this law, we can infer that the energy before is equal to the energy afterward.</span>
Answer:
vf=94.4 m/s
Explanation:
acceleration is the final velocity minus initial velocity divided by time
a = (vf-vi)/t
Given:
a= 14.2 m/s^2
vi= 0 (at rest)
t = 6.6
Solve for vf
a = (vf-vi)/t
a*t=vf-vi
(14.2)*(6.6)=vf - 0
vf=94.4 m/s
Each horse's force forms a right angle triangle with the barge and subtends an angle of 60/2 = 30°. The resultant in the direction of the barge's motion is:
Fx = Fcos(∅)
We can multiply this by 2 to find the resultant of both horses.
Fx = 2Fcos(∅)
Fx = 2 x 720cos(30)
Fx = 1247 N