<span>The answer is that the number of water molecules increases and that of vapor decreases. When energy is removed from the system it would do so mostly as heat. Therefore the energy in the system would decrease and the molecules would vibrate at lower energies. Therefore, several water vapor molecules would turn back to water. </span>
In regards to this question, there are no options given to choose from and this makes the question difficult to answer. I hope the answer i am giving is the one you were looking for. The compound Mg(OH)2 when stirred in water will not pass through a filter paper as it is bound to form a sediment. This sediment will get stuck in the filter paper.
Answer:
B. The value of q is positive
Explanation:
Answer:
massive flooding occurs in may at this location
Explanation:
i did the quiz idk if its right though :/
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.