By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823
Answer:

Step-by-step explanation:
The triangle is shown in the attachment.
Recall that;

This implies that;

We substitute the values into the ratio to obtain

From the information given:
Random wins 2000 800 400 0
Probabilities 1/10^4 4/10^4 10/10^4 9985/10^4
thus the expectation will be:
E(x)=[2000+4*800+4000+9985*0]/10^4
E(x)=9200/10000
E(x)=$0.92
Answer:
no
Step-by-step explanation:
since the y=mx+b format is used here, your b is -5. for this to be correct, your y-int needs to be on -5, not -2 as you have it. Other than that, i believe you are correct
Answer:
A = 31.8 cm2
Step-by-step explanation:
Yhe formula:


central angle = (180-135)° = 45°


Hope this helps