We're looking for the two values being subtracted here. One of these values is easy to find:
<span>g(1) = ∫f(t)dt = 0</span><span>
since taking the integral over an interval of length 0 is 0.
The other value we find by taking a Left Riemann Sum, which means that we divide the interval [1,15] into the intervals listed above and find the area of rectangles over those regions:
</span><span>Each integral breaks down like so:
(3-1)*f(1)=4
(6-3)*f(3)=9
(10-6)*f(6)=16
(15-10)*f(10)=10.
So, the sum of all these integrals is 39, which means g(15)=39.
Then, g(15)-g(1)=39-0=39.
</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
B)<span>He had experience in a wide variety of jobs</span>
Answer:
$8.00
Step-by-step explanation:
The problem statement gives two relations between the prices of two kinds of tickets. These can be used to write a system of equations for the ticket prices.
__
<h3>setup</h3>
Let 'a' and 'c' represent the prices of adult and children's tickets, respectively. The given relations can be expressed as ...
a - c = 1.50 . . . . . . . adult tickets are $1.50 more
175a +325c = 3512.5 . . . . . total revenue from ticket sales.
__
<h3>solution</h3>
We are only interested in the price of an adult ticket, so we can eliminate c to give one equation we can solve for 'a'. Using the first equation, an expression for c is ...
c = a -1.50
Substituting that into the second equation, we have ...
175a +325(a -1.50) = 3512.50
500a -487.50 = 3512.50 . . . . . . simplify
500a = 4000 . . . . . . add 487.50
a = 8 . . . . . . . . . divide by 500
An adult ticket costs $8.