Answer:
0.0623 ± ( 2.056 )( 0.0224 ) can be used to compute a 95% confidence interval for the slope of the population regression line of y on x
Step-by-step explanation:
Given the data in the question;
sample size n = 28
slope of the least squares regression line of y on x or sample estimate = 0.0623
standard error = 0.0224
95% confidence interval
level of significance ∝ = 1 - 95% = 1 - 0.95 = 0.05
degree of freedom df = n - 2 = 28 - 2 = 26
∴ the equation will be;
⇒ sample estimate ± ( t-test) ( standard error )
⇒ sample estimate ± (
) ( standard error )
⇒ sample estimate ± (
) ( standard error )
⇒ sample estimate ± (
) ( standard error )
{ from t table; (
) = 2.055529 = 2.056
so we substitute
⇒ 0.0623 ± ( 2.056 )( 0.0224 )
Therefore, 0.0623 ± ( 2.056 )( 0.0224 ) can be used to compute a 95% confidence interval for the slope of the population regression line of y on x
Answer:
boonpono
Step-by-step explanation:
Answer: 9.75m
Step-by-step explanation:
3.5 + 2.1 + 1.9 + 2.25 = 5.75 + 4 = 9.75 m
Distance from a point to a line (Coordinate Geometry)
Method 1: When the line is vertical or horizontal
, the distance from a point to a vertical or horizontal line can be found by the simple difference of coordinates
. Finding the distance from a point to a line is easy if the line is vertical or horizontal. We simply find the difference between the appropriate coordinates of the point and the line. In fact, for vertical lines, this is the only way to do it, since the other methods require the slope of the line, which is undefined for evrtical lines.
Method 2: (If you're looking for an equation) Distance = | Px - Lx |
Hope this helps!
Answer:
c = 16
Explanation:
Do it on a calculator it'll be correct