Frequency, f = v / λ
f = 2.998 * 10⁸ / 3.55*10⁻⁸
f = 8.445 * 10¹⁵ Hz.
<h2>Please mark me as brainliest please yaa!!!^_^</h2>
Answer:
35 . 29%
Explanation:
no. of questions in test =34
no. of questions answered correctly =22
therefore, no. of questions answered incorrectly =34 - 22
=12
error percentage = 12/34 * 100
=35 .29 %
Answer:
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol
Explanation:
Step 1: Data given
The combustion reaction of octane produces 5104.1 kJ per mol octane
Step 2: The balanced equation
C8H18(g) + 12.5 O2 ⟶ 8CO2 (g) + 9 H2O (g) ∆H°rxn = -5104.1 kJ/mol
Step 3:
∆H°rxn = ∆H°f of products minus the ∆H° of reactants
∆H°rxn = ∆H°f products - [∆H°f reactants]
-5104.1 kJ/mol = (8*∆H°fCO2 + 9*∆H°fH20) - (∆H°fC8H18 + 12.5∆H°fO2)
∆H°f C8H18 = ∆H°f 8CO2 + ∆H°f 9H2O+ 5104.1 kJ/mol
∆H°f C8H18 = 8 * (-393.5 kJ)/mol + 9 * (-241.8 kJ/mol)] + 5104.1 kJ
/mol
∆H°f C8H18 = -220.1 kJ/mol
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol
Answer:
a. 5.9 × 10⁻³ M/s
b. 0.012 M/s
Explanation:
Let's consider the following reaction.
2 N₂O(g) → 2 N₂(g) + O₂(g)
a.
Time (t): 12.0 s
Δn(O₂): 1.7 × 10⁻² mol
Volume (V): 0.240 L
We can find the average rate of the reaction over this time interval using the following expression.
r = Δn(O₂) / V × t
r = 1.7 × 10⁻² mol / 0.240 L × 12.0 s
r = 5.9 × 10⁻³ M/s
b. The molar ratio of N₂O to O₂ is 2:1. The rate of change of N₂O is:
5.9 × 10⁻³ mol O₂/L.s × (2 mol N₂O/1 mol O₂) = 0.012 M/s