<h3>Given</h3>
A(-3, 1), B(4, 5)
<h3>Find</h3>
coordinates of P on AB such that AP/PB = 5/2
<h3>Solution</h3>
AP/PB = 5/2 . . . . . desired result
2AP = 5PB . . . . . . multiply by 2PB
2(P-A) = 5(B-P) . . . meaning of the above
2P -2A = 5B -5P . . eliminate parentheses
7P = 2A +5B . . . . . collect P terms
P = (2A +5B)/7 . . . .divide by the coefficient of P
P = (2(-3, 1) +5(4, 5))/7 . . . . substitute the given points
P = (-6+20, 2+25)/7 . . . . . . simplify
P = (2, 3 6/7)
Distance = 3 units .....................
The complement would be 90 -49.7 degrees (note: not " % ").
The supplement would be 180 - 49.7 degrees.
AE-CE=AC (23-7=16) (Assuming fragment AE is intersected only by C)
3\4 - 1\8
lcm of 4 and 8=8
(8\4=2 x 3=6)
(8\8=1x 1=1)
answer=6-1=5\8