Answer:
It is 20. g HF
Explanation:
H2 + F2 ==> 2HF ... balanced equation
Since the question is asking us to find the mass of product formed, we will want to first convert the molecules of H2 into moles of H2 (we could do this at the end of the calculations, but it's just as easy to do it now).
moles of H2 present (using Avogadro's number):
3.0x1023 molecules H2 x 1 mole H2/6.02x1023 molecules = 0.498 moles H2
From the balanced equation, we see that 1 mole H2 produces 2 moles HF. Therefore, we can now find the theoretical mass of HF produced from 0.498 moles H2:
0.498 moles H2 x 2 moles HF/1 mol H2 = 0.996 moles HF formed.
The molar mass of HF = 20.01 g/mole, thus...
0.996 moles HF x 20.01 g/mole = 19.93 g HF = 20. g HF formed (to 2 significant figures)
Answer:
the answer is your a awesome person
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Answer:
We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the <u>phosphate</u> group attached to the 5' carbon atom of the sugar portion of a nucleotide and the <u>hydroxyl</u> group attached to the <u>3'</u> carbon atom
Explanation:
Nucleic acids are polymers formed by a phosphate group, a sugar (ribose in RNA and deoxyribose in DNA) and a nitrogenous base. In the chain, the phosphate groups are linked to the 5'-carbon and 3'-carbon of the ribose (or deoxyribose) and the nitrogenous base is linked to the 2-carbon. Based on this structure, the nucleic acid chain orientation is identified as the 5'-end (the free phosphate group linked to 5'-carbon of the sugar) and the 3'-end (the free hydroxyl group in the sugar in 3' position).