Answer: The given statement is true.
Explanation:
Water is a natural resource present in the nature and it is very precious as life without it is impossible.
So, when we unnecessarily use water then it means we are wasting a natural resource that cannot be reproduced again by human beings.
Therefore, more we are able to conserve water more we can protect other human life's and environment also.
If there is shortage of water then its prices will go high and hence we need to pay more for it.
Thus, we can conclude that the statement conserving water can save money while protecting the environment, is true.
False
Although we use many of their ideas to describe atoms today, such as the existence of a tiny, dense nucleus in an atom (proposed by Rutherford), or the notion that all atoms of an element are identical (proposed by Dalton), some of their ideas have been rejected by the modern theory of the atom.
For example, Thompson came up with the plum pudding model to describe an atom, which resembled a sphere of positive charge with electrons embedded in it. We know now, however, that atoms are mostly empty space with a tiny, dense nucleus.
Another example is Dalton's atomic theory, which stated that atoms are indivisible particles. However, this was disproved by the discovery of subatomic particles.
The theory assumes that collisions between gas molecules and the walls of a container are perfectly elastic, gas particles do not have any volume, and there are no repulsive or attractive forces between molecules .
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.