Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;

Therefore, the average velocity is 180 km/hr
Answer:
an instrument for measuring an electromotive force by balancing it against the potential difference produced by passing a known current through a known variable resistance.
Discrete systems are those systems in which are made up of finite component particles a which are non-homogeneously arranged such that no smooth variation exists. It is such that all constituent particles have properties which vary randomly. They are direct opposite to continuous systems, which are smooth arrangement of particles which cannot be individually taken into consideration.
Was this answer helpful
Answer:
The speed traveled by the car is 40 meter per second.
Explanation:
The formula for the relation between the power and the force is as follows:
P = Fv
Where F is the force and v is the speed.
As given
To travel at constant speed, a car engine provides 24KW of useful power. The driving force on the car is 600N.
F = 600 N
Convert power from KW to W.
1 KW = 1000 W
24 KW = 24 × 1000 W
= 24000 W
Thus
P = 24000 W
Put these values in the formula.
24000 = 600 × v
24000 = 600v

v = 40 meter per second .
Therefore the speed of the car is 40 meter per second .
Answer:
h = 13.06 m
Explanation:
Given:
- Specific gravity of gasoline S.G = 0.739
- Density of water p_w = 997 kg/m^3
- The atmosphere pressure P_o = 101.325 KPa
- The change in height of the liquid is h m
Find:
How high would the level be in a gasoline barometer at normal atmospheric pressure?
Solution:
- When we consider a barometer setup. We dip the open mouth of an inverted test tube into a pool of fluid. Due to the pressure acting on the free surface of the pool, the fluid starts to rise into the test-tube to a height h.
- The relation with the pressure acting on the free surface and the height to which the fluid travels depends on the density of the fluid and gravitational acceleration as follows:
P = S.G*p_w*g*h
Where, h = P / S.G*p_w*g
- Input the values given:
h = 101.325 KPa / 0.739*9.81*997
h = 13.06 m
- Hence, the gasoline will rise up to the height of 13.06 m under normal atmospheric conditions at sea level.