Answer:
The planes’ acceleration from A to B is 500m/s^2
Explanation:
Given that the initial velocity u is 8000m/s
and also given the final velocity v=10,000 m/s
the time taken to move from A to B = 40 second
The acceleration is defined as the rate of change of velocity with time
we know that the expression for acceleration is given as
a=(v-u)/t
substituting our given data into the expression for a we have
a=(10000-8000)/40
a=2000/40
a=500m/s^2
The planes’ acceleration from A to B is 500m/s^2
Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

Answer:
4
Explanation:
We know that intensity I = P/A where P = power and A = area through which the power passes through.
Now, let the initial intensity of the speaker be I₀ and its initial power be P₀. Since the intensity is increased by a factor of 4, the new intensity be I and new power be P.
So, I = P/A and I₀ = P₀/A
Now, if I = 4I₀,
P/A = 4P₀/A
P = 4P₀
Now, energy E = Pt, where t = time. So, P = E/t and P₀ = E₀/t
Substituting P and P₀ into the equation, we have
P = 4P₀
E/t = 4E₀/t
E = 4E₀
Since the energy is four times the initial energy, the energy output increases by a factor of 4.
Humid tropical climates are climates that have no winters.