65234. i say this because the net force is stopping the jig
If that's the case, then
50 units = 0.55 x the input energy
Divide each side by 0.55 :
50 units/0.55 = the input energy =
<span> 90 and 10/11 units</span>
<h2>
Answer:</h2>
1.77V
<h2>
Explanation:</h2>
The electromotive force voltage (E) in a cell, is related to the lost voltage (
) and the terminal voltage (
) as follows;
E =
- 
Where;
The lost voltage (
) is the product of the internal resistance (r) of the cell and current (I) in the cell. i.e
= I x r
<em>Substitute </em>
<em> = I x r into equation (i) as follows;</em>
E =
- (I x r) ----------------------(ii)
<em>According to the question;</em>
E = 1.54V
I = 2.15A
r = 0.105Ω
<em>Substitute these values into equation(ii) as follows;</em>
1.54 =
- (2.15 x 0.105)
1.54 =
- (0.22575)
1.54 =
- 0.22575
<em>Solve for </em>
<em>;</em>
= 1.54 + 0.22575
= 1.54 + 0.22575
= 1.77V
Therefore, the terminal voltage of the cell is 1.77V
Answers with explanation
1)
Transmission
If all the light passes through a medium without any absorption then transmittance is 100%.
2)
Refraction
Refraction is the bending of a wave when it enters a medium where its speed is different and rays are again refracted when they leave that medium,
3)
Reflection
Reflected rays don't pass through the medium instead rays bounces off an object at an angle.
Answer:

Explanation:
Given that,
Initial angular velocity, 
Acceleration of the wheel, 
Rotation, 
Let t is the time. Using second equation of kinematics can be calculated using time.

Let
is the final angular velocity and a is the radial component of acceleration.

Radial component of acceleration,

So, the required acceleration on the edge of the wheel is
.