(4 - -2) / (9 - 5) = 6/4 or 3/2
Acute usually means below or exactly 90°, so the greatest would be 90
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:

- [Bounds] Switch:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Exponential Integration:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Answer:
x = -19; y = 25/3
Step-by-step explanation:
Step 1: solve the equation with only one variable
Isolate the variable (x)
x + 10 = -9
x = -9 - 10
x = -19
Step 2: input new information into the other equation
If x = -19, then:
2(-19) - 6y = 12
Isolate the variable (y)
-38 - 6y = 12
-6y = 12 + 38
-6y = 50
y = 50 ÷ 6
y = 50/6
Simplify
y = 25/3
Answer:

Step-by-step explanation:
We are given:

And we want to find:

This is equivalent to:

So, we will evaluate g(-5) first, which yields:

So:

Then:

Therefore:
