When you put a popcorn kernel in a microwave, the microwave heats up the water. The water then evaporates, and the air wants to escape. There will be so much pressure that the skin/shell of the kernel will break, exposing the corn.
Answer is: a) is has increased.
There are two types of reaction:
1) endothermic reaction (chemical reaction that absorbs more energy than it releases).
For example, the breakdown of ozone is an endothermic process. Ozone has lower energy than molecular oxygen (O₂) and oxygen atom, so ozone need energy to break bond between oxygen atoms.
2) exothermic reaction (chemical reaction that releases more energy than it absorbs).
For example, ΔH(reaction) = -225 kJ/mol; this is exothermic reaction.
Answer:
The percent yield of the reaction is 35 %
Explanation:
In the reaction, 1 mol of hydrazine reacts with 1 mol O₂ to produce 1 mol of nitrogen and 2 moles of water.
Let's verify the moles that were used in the reaction.
2.05 g . 1mol/ 32 g = 0.0640 mol
In the 100% yield, 1 mol of hydrazine produce 1 mol of N₂ so If I used 0.0640 moles of reactant, I made 0.0640 moles of products.
Let's use the Ideal Gases Law equation to find out the real moles of nitrogen, I made (real yield).
1atm . 0.550L = n . 0.082 . 295K
(1atm . 0.550L) / 0.082 . 295K = n → 0.0225 moles
Percent yield of reaction = (Real yield / Theoretical yield) . 100
(0.0225 / 0.0640) . 100 = 35%
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.