NaCl (Sodium chloride)
LiF (Lithium fluoride)
The oxidation state of the compound Mn (ClO4)3 is to be determined in this problem. For oxygen, the charge is 2-, the total considering its number of atoms is -24. Mn has a charge of +3. TO compute for Mn, we must achieve zero charge overall hence 3+3x-24=0 where x is the Cl charge. Cl charge, x is +7.
Answer:
Ovary
Explanation:
ovaries produce the most estrogen in females.
Answer:
Subtract water vapor pressure from total pressure to get partial pressure of gas A: PA=1.03 atm- 1 atm=0.03 atm.
What is the total pressure of the gases at 298 K?
98.8 kPa
A sample of nitrogen gas is bubbled through water at 298 K and the volume collected is 250 mL. The total pressure of the gas, which is saturated with water vapour, is found to be 98.8 kPa at 298 K.
The total pressure of a mixture of gases can be defined as the sum of the pressures of each individual gas: Ptotal=P1+P2+… +Pn. + P n . The partial pressure of an individual gas is equal to the total pressure multiplied by the mole fraction of that gas.
How do you find the partial pressure of water in air?
e is vapor pressure Rv = R∗/Mv = 461.5Jkg−1K−1 and Mv = 18.01gmol−1, ϵ = Mv/Md = 0.622. The vapor pressure is the partial pressure of the water vapor. where es is in Pascals and T is in Celsius.
ExpHow do you find the pressure of h2?
For the high pressures in which hydrogen gas is often stored, the van der Waals equation can be used. It is P+a(n/V)^2=nRT. For diatomic hydrogen gas, a=0.244atm L^2/mol^2 and b=0.0266L/mol.lanation:
Answer:
b. 10 mL
Explanation:
First we <u>calculate the amount of H⁺ moles in the acid</u>:
- [H⁺] =
100 mL ⇒ 100 / 1000 = 0.100 L
- 1x10⁻⁵M * 0.100 L = 1x10⁻⁶ mol H⁺
In order to have a neutral solution we would need the same amount of OH⁻ moles.
We can use the pOH value of the strong base:
Then we <u>calculate the molar concentration of the OH⁻ species in the basic solution</u>:
- [OH⁻] = = 1x10⁻⁴ M
If we use 10 mL of the basic solution the number of OH⁻ would be:
10 mL ⇒ 10 / 1000 = 0.010 L
- 1x10⁻⁴ M * 0.010 L = 1x10⁻⁶ mol OH⁻
It would be equal to the moles of H⁺ so the answer is b.