If the care is impacted by something over 25 miles per hour
The bubbles that were observed after the mixing of the two substances is one of the products of the reaction. It is the carbon dioxide that is produced. To determine the mass of this gas produced, we need to remember the Law of conservation of mass where mass cannot be created or destroyed. With this, we can say that the total mass that goes in a process should be equal to the mass that is goes out of the process no matter what the reaction is. We do as follows:
Mass of reactants = mass of products
11.00 + 44.55 = 51.04 + mass of carbon dioxide
mass of carbon dioxide = 4.51 g
Answer: 2.4 ml
Solution :
Molar mass of
= 17 g/mole
Given,: 28% w/w of
solution means 28 g of ammonia in 100 g of solution.
Mass of solution = 100 g
Now we have to calculate the volume of solution.
Molarity : It is defined as the number of moles of solute present in one liter of solution.

where,
n = moles of solute 
= volume of solution in liter = 0.11 L
Now put all the given values in the formula of molarity, we get

Using molarity equation:



Answer: The results agree with the law of conservation of mass
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. On the reactant side, the total mass of reactants is 14.3g and the total product masses is also 14.3g. That implies that no mass was !most in the reaction. The sum of masses on the left hand side corresponds with sum of masses on the right hand side of the reaction equation.