Answer:
6.33×10¯²² g
Explanation:
From the question given above, the following data were obtained:
Number of atoms = 6 atoms
Mass of copper (Cu) =?
From Avogadro's hypothesis, we understood that:
6.02×10²³ atoms = 1 mole of Cu
But 1 mole of Cu = 63.5 g
Thus,
6.02×10²³ atoms = 63.5 g of Cu
Finally, we shall determine the mass of 6 atoms of copper. This can be obtained as illustrated below:
6.02×10²³ atoms = 63.5 g of Cu
Therefore,
6 atoms = (6 × 63.5) / 6.02×10²³
6 atoms = 6.33×10¯²² g of Cu
Therefore, the mass of 6 atoms of copper is 6.33×10¯²² g.
Answer:
Ca
2+
<K + <Ar<Cl − <S 2−
Explanation:
Ar,K +
,Cl −
,S 2−
,Ca 2+
have the same number of electrons. Their radii would be different because of their different nuclear charges. The cation with the greater positive charge will have a smaller radius because of the greater attraction of the electrons to the nucleus. Anion with the greater negative charge will have the larger radius. In this case, the net repulsion of the electrons will outweigh the nuclear charge and the ion will expand in size. Hence the correct order will be Ca
2+ <K + <Ar<Cl − <S 2−
The given statement is True.
This is single replacement reaction.
As reactivity decreases down the group,
Iodine is less reactive than Chlorine.
And so Iodine cannot replace chlorine from FeCl2.
I2 + FeCl2 ---> no reaction (Iodine is less reactive than chlorine)
(B), because 1.0 moles would be 6.02 x 10^23 molecules. So you have half a mole.<span>
</span>
Answer:
Yes, Pb3(PO4)2.
Explanation:
Hello there!
In this case, according to the given balanced chemical reaction, it is possible to use the attached solubility series, it is possible to see that NaNO3 is soluble for the Na^+ and NO3^- ions intercept but insoluble for the Pb^3+ and PO4^2- when intercepting these two. In such a way, we infer that such reaction forms a precipitate of Pb3(PO4)2, lead (II) phosphate.
Regards!