Answer:
B
Explanation:
it uses the process of the light reaction stage and Calvin cycle to trap sunlight in the day and make food at night
Answer:
A. 0.064mol
B. 0.85mol
C. 1500mL
Explanation:
A. Molarity = 0.33M
Volume = 195mL = 195/1000 = 0.195L
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.33 x 0.195
Mole = 0.064mol
B. Molarity = 1.7M
Volume = 500mL = 500/1000 = 0.5L
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 1.7 x 0.5
Mole = 0.85mol
C. C1 = 12M
V1 = 50mL
C2 = 0.4M
V2 =?
Using the dilution formula C1V1 = C2V2, we find the volume of the diluted solution as follows:
C1V1 = C2V2
12 x 50 = 0.4 x V2
Divide both side by 0.4
V2 = (12 x 50) /0.4
V2 = 1500mL
Answer:
A typical atom consists of three subatomic particles: protons, neutrons, and electrons (as seen in the helium atom below). Other particles exist as well, such as alpha and beta particles (which are discussed below). The Bohr model shows the three basic subatomic particles in a simple manner. Most of an atom's mass is in the nucleus—a small, dense area at the center of every atom, composed of nucleons. Nucleons include protons and neutrons. All the positive charge of an atom is contained in the nucleus, and originates from the protons. Neutrons are neutrally-charged. Electrons, which are negatively-charged, are located outside of the nucleus.
Explanation:
PV = nRT
P = 157 kPa = 157 × 10³ Pa
V = 265 ml = 0.265 l
T = 20°C = 293 K
m = 0.479 g
PV•M = mRT
M = (mRT)/(PV)
M = 0.479 g × 8.314 kPa.l/(mol.K) × 293 K / (157 kPa × 0.265 l)
M ≈ 28.04579 g/mol.
Hence, the Molar Mass of Dinitrogen or Nitrogen Gas is 28 g.