Answer:
F = 50000 N
Explanation:
The acceleration is rate of change of velocity of an object with respect to time.
Formula:
a = Δv/Δt
a = acceleration
Δv = change in velocity
Δt = change in time
Units:
The unit of acceleration is m.s⁻².
Acceleration can also be determine through following formula,
F = m × a
a = F/m
Given data:
Mass of car = 1250 Kg
Acceleration = 40 m/s².
Force = ?
Solution:
F = m × a
F = 1250 Kg × 40 m/s²
Kg.m/s² = N
F = 50000 N
The mass of magnesium should be less than 0.09g to enable a faster reaction rate. Magnesium reacts to form a white coating around it which stops the reaction. The lesser the gram the faster the reaction before the coating is formed. It is also advisable to use magnesium fillings to increase the rate of reaction.
Ethylene Burns in the presence of O₂ to produce CO₂ and H₂O vapors;
C₂H₄ + 3 O₂ → 2 CO₂ + 2 H₂O
According to equation,
22.4 L (1 mole) C₂H₄ reacts completely to produce = 44.8 L (2 moles) of H₂O
So,
1.65 L of C₂H₄ on complete reaction will produce = X L of H₂O
Solving for X,
X = (1.65 L × 44.8 L) ÷ 22.4 L
X = 3.3 L of H₂O
<h2>
Answer: 131.9 g</h2>
<h3>
Explanation:</h3>
<u>Write a Balanced Equation for the decomposition</u>
CaCO₃ → CaO + CO₂
<u></u>
<u>Find Moles of CO₂ Produced</u>
Since the mole ratio of CaCO₃ to CO₂ is 1 to 1,
the moles of CaCO₃ = moles of CO₂
moles of CaCO₃ = mass ÷ molar mass
= 300 g ÷ 100.087 g/mol
= 2.997 moles
∴ moles of CO₂ = 2.997 moles
<u>Determine Mass of CO₂</u>
Mass = moles × molar mass
= 2.997 mol × 44.01 g/mol
= 131.9 g
<u></u>
<h3>∴ when 300 g of calcium carbonate is decomposed, it produces 131.9 g of carbon dioxide.</h3>