Answer:
The answer to the question is 0.0122 m/s
Explanation:
The rate of a reaction is the measure of the change in concentration of a reagent within a specific time frame. Reaction rate of a substance can be calculated by finding the division of the concentration change of the substance and the time required to undergo the change in concentration.
The initial number of moles of X = 0.732 moles and final number of moles of X = 0 moles and the time it took to effect the change = 60s
then the rate of reaction =
= 0. 0122 moles per second
the rate of the reaction involving X = 0.0122 m/s
Answer 2. Accept with minor revisions: Also known as conditional acceptance, this decision means that the paper requires minor changes for it to be ...
wer:
Explanation:
Answer:
A. DH° = –36 kJ
Explanation:
It is possible to obtain DH° of a reaction by the sum of DH° of half reactions. The DH° of the reaction:
B₂H₆(g) → 2B(s) + 3H₂(g)
Could be obtained from:
<em>(1) </em>2B(s) + 1.5O₂(g) → B₂O₃(s) DH° = –1273kJ
<em>(2) </em>B₂H₆(g) + 3O₂(g) → B₂O₃(s) + 3H₂O(g) DH° = –2035kJ
<em>(3) </em>H₂(g) + 0.5O₂(g) → H₂O(g) DH° = –242kJ
The sum of (2) - (1) gives:
B₂H₆(g) + 1.5O₂(g) → 2B(s) + 3H₂O(g) DH° = -2035kJ - (-1273kJ) = -762kJ
Now, this reaction - 3×(3):
B₂H₆(g) → 2B(s) + 3H₂(g) DH° = -762kJ - (3×-242kJ) = -36kJ
Thus, right answer is:
<em>A. DH° = –36 kJ</em>
Answer:
<em>The three gases, in the three identical containers, will all have the same number of molecules</em>
Explanation:
If these three gases (Helium He, Neon Ne, and Oxygen
) are all contained in separate identical containers with the same volume. And they are all stored at the same temperature, and pressure. Then, they'll all contain the same number of molecules. This is in line with Avogadro's law which states that "Equal volume of all gases, at the same temperature and pressure, have the same number of molecules."