1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
77julia77 [94]
3 years ago
5

all of the following answer choices are ideas from daltons atomic theory. which one of them do we now know is not true?

Physics
1 answer:
dem82 [27]3 years ago
5 0
Did you forget to include the options?
You might be interested in
A 2.0 g identification reflector glued to one end of a helicopter rotor is spinning at a tangential velocity of 2093 m/s. The re
katrin2010 [14]
372863 juusnjus bhhhanbubhgajhus
7 0
3 years ago
You drop a rock off the top of a 100 m tall building. How long does it take to hit the ground?
Vitek1552 [10]
It would mostly depend on its weight
4 0
3 years ago
Calculate the temperature of the air mass when it has risen to a level at which atmospheric pressure is only 8.00×104 Pa . Assum
cestrela7 [59]

Answer:

T_{2}=278.80 K

Explanation:

Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.

(\frac{V_{1}}{V_{2}})^{\gamma -1} = \frac{T_{2}}{T_{1}}.

Now, let's use the ideal gas equation to the initial and the final state:

\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}}

Let's recall that the term nR is a constant. That is why we can match these equations.  

We can find a relation between the volumes of the initial and the final state.

\frac{V_{1}}{V_{2}}=\frac{T_{1}p_{2}}{T_{2}p_{1}}

Combining this equation with the first equation we have:

(\frac{T_{1}p_{2}}{T_{2}p_{1}})^{\gamma -1} = \frac{T_{2}}{T_{1}}

(\frac{p_{2}}{p_{1}})^{\gamma -1} = \frac{T_{2}^{\gamma}}{T_{1}^{\gamma}}

Now, we just need to solve this equation for T₂.

T_{1}\cdot (\frac{p_{2}}{p_{1}})^{\frac{\gamma - 1}{\gamma}} = T_{2}

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.

Here,

p_{2}=8.00\cdot 10^{4} Pa \\p_{1}=1.01\cdot 10^{5} Pa\\ T_{1}=298 K\\ \gamma=1.40

Finally, T2 will be:

T_{2}=278.80 K

6 0
3 years ago
How are ocean ridges formed
Basile [38]
The answer is divergent boundaries.
I hope this helps you!
5 0
3 years ago
Read 2 more answers
Explain why the shortening velocity became slower as the load became heavier in this experiment. how well did the results compar
valkas [14]
<span>The shortening velocity refers to the speed of the contraction from the muscle shortening while lifting a load. Maximal shortening velocity is only attained with a minimal load. With a light load, the shortening velocity is at its Maximal shortening velocity. When the weight is heavy, the speed in which the muscle lifts the weight decreases in speed at a slower velocity.</span>
6 0
3 years ago
Other questions:
  • After an eye examination, you put some eyedrops on your sensitive eyes. The cornea (the front part of the eye) has an index of r
    8·1 answer
  • The greater the speed of speed gas particles in containers, the
    13·1 answer
  • The gage pressure of an automobile tire is measured to be 210kPa before a trip and 220kPa after the trip at a location where the
    10·1 answer
  • What is the difference between P and S waves
    14·1 answer
  • Please help, worth sooo many points and giving brainliest.
    9·1 answer
  • Why is it useful to know the net force?
    12·2 answers
  • Where does the body get each of these
    5·2 answers
  • Where does the electrons go when a short circuit occurs​
    8·2 answers
  • : A small block with mass 0.130 kg is attached to a string passing through a hole in a frictionless, horizontal surface. The blo
    7·1 answer
  • Write a summary paragraph discussing this experiment and the results. Use the following questions and topics to help guide the c
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!