Answer:
Assessment zone
Explanation:
It is the assessment zone in various security zones where active and passive security measures are employed to identify, detect, classify and analyze possible threats inside the assessment zones.
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
Answer:
a) v, v
b) 2mv^2
c) Elastic collion
Explanation:
(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v). From momentum conservation in x-direction
Here x, y represent direction.They are not variable. 1 and 2 represent before and after.
2vm=v1xm+v2xm, we find v1x=v.
From momentum conservation in y-direction
0 =v1ym+v2ym, we findv1y=v.
(b) By energy conservation principle
Before: K=1/2m(2v)^2=2mv^2.
After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2
(c) The collision is elastic
Answer:
25032.47 W
Explanation:
Power is the time rate of doing work, hence,
P = Work done(non conservative) / time
Work done (non conservative) is given as:
W = total K. E. + total P. E.
Total K. E. = 0.5mv²- 0.5mu²
Where v (final velocity) = 7.0m/s, u (initial velocity) = 0m/s
Total P. E. = mgh(f) - mgh(i)
Where h(f) (final height) = 7.2m, h(i) (initial height) = 0 m
=> W = 0.5mv² - mgh(f)
P = [0.5mv² - mgh(f)] / t
P = [(0.5*790*7²) - (790*9.8*7.2)] / 3
P = (19355 + 55742.4) / 3 = 75097.4/3
P = 25032.47 W
Change of a liquid to a gas